Deciphering the Transcriptional-Regulatory Network of Flocculation in Schizosaccharomyces pombe
نویسندگان
چکیده
In the fission yeast Schizosaccharomyces pombe, the transcriptional-regulatory network that governs flocculation remains poorly understood. Here, we systematically screened an array of transcription factor deletion and overexpression strains for flocculation and performed microarray expression profiling and ChIP-chip analysis to identify the flocculin target genes. We identified five transcription factors that displayed novel roles in the activation or inhibition of flocculation (Rfl1, Adn2, Adn3, Sre2, and Yox1), in addition to the previously-known Mbx2, Cbf11, and Cbf12 regulators. Overexpression of mbx2(+) and deletion of rfl1(+) resulted in strong flocculation and transcriptional upregulation of gsf2(+)/pfl1(+) and several other putative flocculin genes (pfl2(+)-pfl9(+)). Overexpression of the pfl(+) genes singly was sufficient to trigger flocculation, and enhanced flocculation was observed in several combinations of double pfl(+) overexpression. Among the pfl1(+) genes, only loss of gsf2(+) abrogated the flocculent phenotype of all the transcription factor mutants and prevented flocculation when cells were grown in inducing medium containing glycerol and ethanol as the carbon source, thereby indicating that Gsf2 is the dominant flocculin. In contrast, the mild flocculation of adn2(+) or adn3(+) overexpression was likely mediated by the transcriptional activation of cell wall-remodeling genes including gas2(+), psu1(+), and SPAC4H3.03c. We also discovered that Mbx2 and Cbf12 displayed transcriptional autoregulation, and Rfl1 repressed gsf2(+) expression in an inhibitory feed-forward loop involving mbx2(+). These results reveal that flocculation in S. pombe is regulated by a complex network of multiple transcription factors and target genes encoding flocculins and cell wall-remodeling enzymes. Moreover, comparisons between the flocculation transcriptional-regulatory networks of Saccharomyces cerevisiae and S. pombe indicate substantial rewiring of transcription factors and cis-regulatory sequences.
منابع مشابه
Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast
Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This art...
متن کاملThe Cell Cycle–Regulated Genes of Schizosaccharomyces pombe
Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell ...
متن کاملTranscriptional activity of the human immunodeficiency virus-1 LTR promoter in fission yeast Schizosaccharomyces pombe.
We have analyzed the transcriptional activity of the human immunodeficiency virus type I (HIV-1) LTR promoter in the fission yeast Schizosaccharomyces pombe (S.pombe). The ability of a series of 5'-deleted forms of the HIV-1 LTR promoter to direct transcription of the chloramphenicol acetyltransferase reporter gene was studied. We found that the HIV-1 promoter is functional in S.pombe and that ...
متن کاملA transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe.
We have identified genes encoding candidate proteins involved in iron storage (pcl1+), the tricarboxylic acid cycle (sdh4+), and iron-sulfur cluster assembly (isa1+) that are negatively regulated in response to iron deprivation. Promoter deletion and site-directed mutagenesis permitted identification of a new cis-regulatory element in the promoter region of the pcl1+ gene. This cis-acting regul...
متن کاملDistinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe.
The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H(2)O(2) in the fission ye...
متن کامل